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Integral Representation of Spatial Green’s
Function and Spectral Domain Analysis
of Leaky Covered Strip-Like Lines

Francisco Mesa and Ricardo Marqués

Abstract—This paper studies the possible integral representa-
tions of the Spatial Dyadic Green’s Function of a laterally
open but covered multilayered planar waveguide with translation
symmetry. Among all of integral representations, we especially
focus on that unique representation which comprises only out-
going waves (energy transferred from the source to infinity in
case lateral radiation was present). We propose this specific
integral representation as the most appropriate in the Spectral
Domain Analysis of strip-like structures when these are assumed
to be guiding/leaky systems with translation symmetry. This
integral representation directly provides the integration contour
to be used in the definition of the inverse Fourier transform.
Some aspects concerning the use of the nonconventional Fourier
transform are discussed in connection with the application of the
Method of Moments. It is also highlighted that the dispersion
relation of the strip-like configuration is expressed in terms of the
zeros of a multivalued complex function. This fact becomes rele-
vant when searching for zeros out of the spectral sheet (i.e., zeros
associated with leaky modes). Finally, some numerical results are
presented. These computed values show good agreement when
compared with some previously published data. The influence
of different definitions of the inverse integration contour on
the propagation characteristics of a pair of coplanar coupled
strips is also investigated. Computed data will show the leakage
characteristics of a pair of noncoplanar strips.

I. INTRODUCTION

HE ANALYSIS of electromagnetic propagation in lat-

erally unbounded planar layered structures with top and
bottom impenetrable walls is treated once again in connection
with the leakage phenomenon. Many examples can be found
in the literature dealing with this topic. i.e.. [1}-[3]. Two
different approaches have been used to analyze the leaky
regime: mode-matching and Spectral Domain Analysis (SDA).
Each technique accounts for a different representation of
the electromagnetic field: a discrete sum of modes (series
representation for mode-matching) and a continuous sum
(integral representation for SDA) [4]. [5]. From a practical
point of view, the main differences between these two tech-
niques lie in their computational performance (although in
practice the use of suitable computational strategies may affect
this performance significantly). A crucial point in the two
approaches concerns the choice of the waveguide modes in
which the electromagnetic fields are expanded (in the SDA,
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this also determines the inversion contour of the Fourier
transform). Different criteria to elucidate this choice have
been proposed in the literature, see for example [1], [2], [6].
Nevertheless, to our knowledge, extensive discussion on this
fundamental topic has not been reported in the literature. In
this paper, we again raise this issue following the discussion
presented by the authors in [3]. The problem will be initially
posed in the spatial domain, instead of being posed in the
spectral domain, in order to consider the current density on
the strips as source of the electromagnetic field rather than a
boundary condition (such as considered in the conventional
SDA). This approach makes possible a fruitful application of
power causality requirements, which would provide the most
realistic description of the behavior of the electromagnetic
field in systems with translation symmetry. Thus a basic
assumption is that the line field should be built only with those
waveguide modes carrying power outward from the source.
This requirement besides the consideration of the nonuniform
nature of the waveguide modes will constitute the core of the
present approach.

Once the above choice is made, we apply the Method
of Moments in the spectral domain to study the lines. The
problem is posed in the spectral domain because of its well-
established ability to deal with general multilayered media as
well as multiconductor/multislot configurations. The treatment
of the leaky regime by means of the above method gives rise
to meaningful changes with respect to the treatment of the
conventional guided regime. The most significant changes are
also discussed in some extent. Specifically. the application of
the Parseval’s theorem in the SDA is reviewed to take into
account the complex nature of the spectral variable and some
attention is later devoted to the search for the complex roots
of the resulting determinantal equation. These complex zeros
account for the complex propagation constants of the line and
are found to be located at different sheets of a multivalued
function. This fact complicates the zero-searching process and
makes necessary the use of more efficient strategies. Finally.
comparison with previously published results is presented and
some results are reported for the propagation characteristics
of a pair of coupled strips both in coplanar and noncoplanar
configurations.

II. ANALYSIS

Let us review in this section the basic steps involved in
the SDA of the bound and leaky propagation regimes of a
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Fig. 1. Cross-section of a planar multiconductor transmission system embed-
ded in a lossless layered medium with top and bottom perfectly conducting
walls.

planar transmission -system like that shown in Fig. 1. This
transmission system is composed of noncoplanar conducting
strips embedded in a layered lossless medium bounded by
top and bottom perfectly conducting plates. The present work
will be basically foc;ised on the study of lateral radiation
and in this way, the presence of these conducting plates is
especially suitable since they prevent spatial radiation and
make the mathematical treatment easier. It should be noted that
if the usual rime-harmonic regime is assumed, the treatment
of the covered and the uncovered cases conceptually differs

" because the uncovered case is not merely the limiting case of
the covered one when the top conducting plate is removed to
infinity. This implies that the lateral radiation of the covered
and uncovered cases may be significantly different. Thus a
deeper insight into the lateral radiation mechanism could be
achieved if the covered case is directly studied instead of
analyzing that part of the total radiation corresponding to the
surface waves present in the uncovered case.

First, we discuss the integral representation of the spatial
Green’s function of the structure of Fig. 1 without conduc-
tor strips; the remaining layered waveguide will be called
the background waveguide. This integral representation will
determine the ‘proper inversion contour to define the inverse
Fourier transform. Later, some relevant aspects related to the
application of the Method of Moments and the search for
complex roots are considered.

A. Integral Representation of Green’s Function

Consider the transmission system of Fig. 1. The sub-
strate of this structure is assumed to be lossless and
isotropic/anisotropic but with rotational symmerry around
they y-axis (or in the (x,z)-plane, which will be denoted
as the rransverse plane and represented by the subscript T°).
As is well known, the transverse (10 y) electric and magnetic
fields Er, Hr of the above structure can be derived from
certain scalar-mode functions if the layered medium is made
of isotropic or anisotropic - (satisfying the aforementioned
symmetry condition) layers [4], [5], [7]. The introduction of
these scalar-mode functions permits the definition of LSE
and LSM modes. Thus we first deal only with scalar-mode
functions.

Our first purpose will be the computation of the dyadic
Green’s function, G(z,y; z’,y’), which relates the transverse
(to y) part of the electric field to surface current, Jr(z,y),
contained in some transverse y = ¥’ plane of the structure

in Fig. 1
ET(x,y)=/G*(x,y;x’,y’)'JT(ny’)dx’- (1)

We will assume a source-and field dependence for the z and
t variables of the type e/(“'=*:2) where k, = B, + ja,
represents the complex propagation constant along the z-
direction and w the angular frequency. The usual case of losses
along the z-axis is accounted for by assuming 3, > 0 and
o, < 0.

As mentioned above, any field in the waveguide can be
derived from y-directed LSE and LSM modes. This means that
the dyadic Green’s function can also be derived from certain
scalar-mode Green’s functions. The derivation of these scalar
Green’s functions are readily accomplished if the sources and
fields of our problem are redefined. The new sources are
denoted as F. and F|,, and the new fields as W, and W,
in such a way that

Fe=Vrp -Jp=—gup @
FM = (VT X JT) s Ay (3)
W, =Vr By =228 @

dy
W, =Vy x By = —qwpH, 4)

where
0
VT = ﬂ.w% + az‘gg.

This transformation is essentially the same as that proposed in
[8] (TTL method) when the problem is posed in the spectral
domain.

The new W, and W, fields satisfy the boundary conditions
imposed on the LSM and LSE modes separately. Thus the use
of the transformation (2)~(5) diagonalizes the dyadic Green’s
function

We u(z,y) =/ge,u(:v,y;z’,y’)Fe,M(x’,y’)dx' (6)

where g.,.(z,y;2',y') are the new scalar Green’s functions
and subscripts e and g will refer to LSM and LSE modes,
respectively. If the involved layered medium has rotational
symmetry around the y-axis, this diagonalization works prop-
erly when the layers are isotropic and/or uniaxial anisotropic
[9]. If gyrotropic layers are present, the transformation (2)—(5)
yields nondiagonal expressions for the Green’s dyad and
consequently scalar Green’s functions cannot be defined in
this. case. Nevertheless, a similar analysis could still be ac-
complished if the vectorial nature of sources and fields (as
well as the dyadic nature of the Green’s function) is taken
into account.

The scalar-mode Green’s function gep(z,y; 2", y') (generi-
cally denoted as g) is found to be the solution of the following
scalar-wave equation:

. 2 2
2 O - kD))
oz?

dy?
=8z -2y —y) (D
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(k* = w?eu) when subjected to the appropriate boundary
conditions.

The two-dimensional scalar-mode Green’s function g(z,y;
2’,1/) can be represented via two associated characteristic one-
dimensional Green’s functions g, (z,x) and g,(y,y’) [4], [5]
as

~1
g(x,y;x’qy’)=:h—jf G (2,2 A0) gy (0, 4 T2 = Ap) dXg
-1
=505 b, go(@, 3", T2 — Ay gy (¥, y's Ay) dAy
Y

where A\, + A, = £2—Fk2 = I'? and C, is an integration contour
in the complex A, plane that encloses, in the positive sense,
all the singularities of g, and excludes all the singularities of
gy; similarly, Cy encloses only the singularities of g,,.

Owing to the cumbersome calculations involved in the
treatment of the general structure of Fig. 1, we will first
analyze a simpler isotropic and homogeneous parallel-plate
waveguide. The analysis of this structure will clarify the main
steps of our approach since the procedure is basically the same
as that necessary for the general case.

If, for example, we are interested in the LSM-mode scalar
Green’s function, g. can be expressed as [4]

1 o ivAg e —al]
gelz ysa’ y') = j{ I<

2§ c vz
y i sin ("™ y)sin (2Zy/) Do, @)
L= A — 12— (5E)?]

The integrand in (8) is a two-valued complex function in the
Az-plane with a branch point at A, = 0 and poles located at
Az.m = I'? — (mm /b)? on both sheets of the Riemann surface.
The A, ., poles can be rewritten as

Aeym = Vo.m — k2 )

where 72, = &% — (mm/b)? is the squared transverse
wavenumber of the mth source-free LSM-mode of the ho-
mogeneous parallel-plate waveguide. Note that vy, ,, would
directly account for the phase constant if the corresponding
mode is uniform. On the contrary. as will become apparent
later, this variable should not be identified as the phase
constant of a nonuniform mode [10] (we denote a nonuniform
waveguide mode as that propagating in a given direction and
attenuating/growing in the perpendicular one).

As noted in [5, p. 278], the two-valued function,
g:(z.2', Az), must be defined in such a way that it decays
to zero when |A.| goes to infinity on the top sheet. This
requirement is fulfilled when the branch cut tends for large
values of Re (A,) to the positive real axis but an infinitesimal
distance above it. A usual choice of this branch cut defines
the top sheet of the Riemann surface defined by /A, function
in (8) as that where

Im /A, < 0.

This sheet is usually known as spectral sheet. Since the
integration path in (8) must enclose only the singularities of
9=, G, must then enclose the branch cut in the positive sense

(10)

Singularities of A, plane
g,(T"*-A,)
O Koo S Keeepeereeed X
7\’xfé 7\’)(2 7\’)(,1 cx
rd P
AN

Top sheet: Im(\/x;)<0

Fig. 2. Integration path, C'», on the spectral sheet of the A-plane.

and exclude all the poles of g,, as shown in Fig. 2. The above
choice of the branch cut is simply one possible definition.
From our standpoint, the most convenient choice should be
decided on physical grounds.

Note that for x # &’ (i.e., outside the line source), the
integral (8) over the radius infinity is zero provided the
condition reported in [5, p. 278] is fulfilled. Therefore, the
integral contour can be alternatively closed following the circle
|Az| — oo on the spectral sheet. The integral representation
of g.(x,2', Ay) is thus transformed into a sum of residues at
the poles on the spectral sheet. that is

gé(x‘y;x/,yl) —_ % i sin (%y) sin (%y/> e_jkz,m"r—mll
m=1

kr,m

(1D

where

kr,m = ﬁm,m +jar,m =4/ "Yg,m - kg (12)
This leads to a mode expansion of the scalar Green’s function
whose modes are considered with

Im /42, — k2 < 0.

The fields due to a line source at z = ' are then written as a
superposition of evanescent (in the z-direction) modes of the
background waveguide. Since all these modes also propagate
along the z-direction with a propagation constant &, they are
actually nonuniform modes.

The above expansion of the fields is found appropriate for
the analysis of the purely propagating modes (namely, the
bound modes) of the transmission system of Fig. 1. Neverthe-
less, if we are interested in the analysis of the leaky regime,
the above expansion does not properly describe the growing
field behavior for || — oo. Therefore, a different integral
representation (i.e., a different branch cut choice) should be
considered. As was noted above, any other integration contour
enclosing a different branch cut but having the same initial and
final points (i.e., g,(x.2’,A;) — 0 when |A,| — oo) would
provide a mathematically consistent integral representation of
the Green’s function, and this different integral representation
would also lead to a different modal expansion. We are only
interested in that mathematical solution compatible with the
fact that point (', %) be a source rather than a sink. In other
words, if the propagation constant of the line along 2 is real
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(o, = 0), the above condition is fulfilled if Im (k, ) < 0 and
therefore all the modes behave like evanescent waves along the
z-direction. If &, is assumed to be complex, the propagation
constant of each mode along the z-direction, k ., is also
complex (k; , = By m + jog, m) and consequently energy
is transferred in the z-direction by all waveguide modes. In
this case, point (z’,3") constitutes a source provided that the
modal expansion (11) is formed exclusively by modes carrying
power outward from this point. The criterion to decide which
modes should be included in (11) must then be related to the
direction of the power flux associated with each nonuniform
mode. This criterion will be named the criterion of outgoing
power. Since the same question arises concerning the proper
expansion of the field in terms of waveguide modes and the
proper choice of the branch cut, we first consider the discrete
mode expansion of the scalar Green’s function—see (11)—to
decide later the integration contour on physical grounds.

Taking for simplicity 2’ = 0,4’ = 0, the scalar-mode
Green’s function, g.(r) = g.(x,y)exp(—jk,z), can be writ-
ten as the following expansion in terms of nonuniform and
orthogonal LSM-modes:

ge(r) = Y am(yleIertetharp (13
m=1
where p = |z|a, + za,. If the complex wavevector k,, =

kz m@y + k.a, is defined, the above expression is rewritten as

o0
9e(r) = Y am(y)eikne (14)
m=1
with k,, satisfying the equation
R e A T (15)

The k,,, complex vector can also be written as a sum of a real
and a complex vector

km - /Bm'u'm + jamvm (16)
where Bty = Bom@s + .0 and 0y, = ap may + a0,
are real vectors whose unitary vectors u,, and v, define the
directions of phase propagation and amplitude attenuation,
respectively. From (15) and (16), the above quantities are
related by

2 = 0 =72 — (B2 = a?) (an
Bom Qo = —Bars (18)
B =P+ B2 (19)

a?n = 04721173C + az, 20)

which implies that w,, - v,, = 0. This latter relation is typical
for nonuniform plane waves in lossless media (see, for ex-
ample, [10, pp. 320-334]) and it establishes the orthogonality
between the propagation and attenuation directions.

The expansion given in (14) can also be viewed as the
following superposition of infinite nonuniform modes:

(o]

ge(r) = ) am(y)e

m=1

O‘w,mtx|+o‘:ze_j(ﬂm,m|m|+ﬂzz) (21)

where the presence of the modulus |z| in (21) accounts for
the symmetry of the expansion at both sides of the source
(' = 0). Note that all the nonuniform modes in (21) are slower
than the leaky line mode; namely, its phase constants (,, are
always greater than the leaky mode phase constant (3,—see
(19). Therefore, all the waveguide modes in (21) satisfy the
phase match condition.

The above superposition of nonuniform modes fulfills the
criterion of outgoing power provided that all the modes in
the expansion carry power outward from the source. This
condition will be satisfied when the z-projection of the real
part of the Poynting vector associated with each mode S, .,
is positive. It can be readily shown (see the Appendix) that

Pom =Re(Sum) =Ct72  Bom 22)

where C'7 is a positive quantity. In view of (18) and providing
that sign (8,,,,) = sign (o) (since sign (8,) = —sign(«,)
by hypothesis), the criterion followed to include a mode in
expansion (11) can be expressed as

sign (72, Qo,m) = +. (23)

Since 'y;m is a real number in lossless waveguides, the above
criterion implies that those modes associated with fyg,m >0
should be considered with Im (%, ,»,) > 0; and similarly those
corresponding to 7§’m < 0 with Im (k. ,m) < 0.

Once the modal expansion has been analyzed, the inte-
gration contour of the integral representation (8) should be
defined so that both representations are equivalent. This can be
achieved if the branch cut is defined in such a way that all the
poles associated with the modes in the residue expansion are
located on the top sheet. Then, applying the Cauchy integral
theorem, the correct modal expansion is recovered. This top
sheet will be called causal sheet and verifies that

V2 mIm(\/Azym) > 0

for all values of m.

For example, consider the disposition of the A, ,, poles
shown in Fig. 3, where 7371 > Re (k%) > 'ygz,z > 73’3 > -
(k, complex). Assuming that only the first two poles verify that
’73,m > 0 (m = 1, 2), an integration path, C,, that would yield
a causal integral representation of the scalar mode Green’s
function is illustrated in Fig. 3. Another (but equivalent)
causal integral representation can be obtained by following a
different approach. This approach consists on starting from the
definition of the spectral sheet (see its definition in (10)) and
then to deform the integration path according to the criterion
of the outgoing power. In this case, only the A, ., poles
associated with 'yg,m < 0 should be considered in the spectral
sheet and those associated with fyg2,m > 0 in the bottom sheet
(and consequently, they should be then excluded in the top
sheet). The integration contour and the above described branch
cut are shown in Fig. 4.

If the transformation k2 == X, is applied to (8) (in reference
to any of the integral representations shown in Figs. 3 and 4),
ge turns into the following inverse Fourier transform:

-—1/ Gk, y,y's b )e 7R @) g,
27‘(’ C(w)
(25)

24

ge(z,y;2',y) =
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Smgularmes of
gy(r -\ )

Top sheet: v, Im(\A_,)>0

Fig. 3. Integration path C; on the causal sheet of the A;-plane.

Singularities of Ay
gy(F -As)

Top sheet: Im(\ffx)<0

Fig. 4.
defined as the spectral sheet. (- — — — — ): path in the botton sheet; (
path in the top sheet.

Integration path C'; equivalent to that of Fig. 3 when the top sheet is
):

where

Gells0,y/hs) = %}:“%Twhm“_§) 6)

can be considered the specrral scalar-mode Green’s func-
tion with the corresponding inverse integration contour C'(w)
shown in Fig. 5 (an analogous procedure for the LSE-modes
would lead to a similar expression for g, ). It should be noted
that the inverse integration contour is only a function of the
operating frequency; namely, C(w) should properly surround
all the poles corresponding to positive squared transverse
wavenumbers of the background waveguide. Those poles are
located in the shadowed region of Fig. 5 and this region is
only determined by the 32, — o2, = 32 — a2 hyperbolas.
Consequently, C'(w) does not depend on the height and/or
material characteristics of the layer. These parameters only
affect the total number of poles surrounded by the previously
determined integration contour.

The basic steps of the proceeding development also applies
if the general structure of Fig. 1 had been considered. The
only changes would appear in a more cumbersome algebraical
expression of g,(y,y’; A,) owing to the boundary conditions
at the different interfaces to be now satisfied by gc(y, y'; Ay).
Provided that the scalar LSM- and LSE-mode decomposition
holds, the functions g, [5], [7] can be still expressed in a
closed form similar to (26)

J o~ LW W)
b 2. k2 — k2)

ke = (g m —

ge,u(kwyyvyl;kz) - (27)

Fig. 5.

Integration contour C' in the k.-plane.

where fy;m now accounts for the squared transverse wavenum-
bers of the LSE- and LSM-modes of the general background
waveguide and f5*(y) for the corresponding e, 1o eigenfunc-
tions along the y-direction.

Once the spectral scalar-mode Green’s functions and the
proper inversion contour to be used in the Fourier transform
have been determined, the spatial dyadic Green’s function
(1) G(z,y;2',y') of the general waveguide is obtained by
reversing the transformations (2)—(5). However, this process

" is more readily accomplished in the spectral domain and thus

we first reverse the transformation in the spectral domain.
Later, G(z, y; ', y') can be recovered by means of its integral
representation

Glka,y,y's k2 )e %" dk,
Ow)

~ 1
G(xvy;wlayl) = 2_ (28)

where the spectral dyadic Green’s function (SDGF) is given by

Glke,y,y'sk:) = [Q) " {%ﬁ ) } - Q]
Iu
with [@Q] being the matrix associated with the transformation
(2)—(5) in the spectral domain, that is
—Jks  —Jk:
@= T
and the inversion contour C'(w) is that found for the scalar
Green’s function. .

Besides the above formal procedure to obtain G(ky, k),
there are many examples in the literature concerning the
computation of the SDGF of layered planar structures (see
[11}-[13] and references therein). In most of these methods,
the problem is directly posed in the spectral domain and
then the surface current density is considered as a boundary
condition rather than a source. These methods are found
advantageous since they provide the SDGF for very general
structures (even if LSE/LSM-mode decomposition is not possi-
ble). However, they do not say anything about the appropriate
inversion contour. This is the main reason why the source has
been explicitly taken into account in the present analysis.

The spatial transverse (to y) electric field, Ex(z,y)e 7%=2,
produced by a certain transverse current distribution,
Jr(z,y)e 757 can then be expressed (after applying
Parseval’s theorem) as

1 = - )
/ Gy, ko) - Ir(ky) e 7% dk,. (31)
271' C(w)

(29)

(30)

Er(z,y) =



MESA AND MARQUES: INTEGRAL REPRESENTATION OF GREEN’S FUNCTION AND ANALYSIS OF LEAKY STRIP-LIKE LINES 833

In the above expression, G(k,, k,) represents the analytical
extension of the usual SDGF (which could be readily com-
puted following the EBM technique shown in [13], [14]) and
C(w) is that integration contour satisfying the criterion of
outgoing power discussed above.

B. Method of Moments

_As is well known, the application of Galerkin’s method to
the analysis of the transmission system shown in Fig. 1 leads
to a homogeneous matrix eigenvalue problem. The elements
of the eigenvectors of this problem are the coefficients of the
expanded excitation and the eigenvalues, which are the zeros
of a determinantal function, represent the modal propagation
constants of the transmission system. Each element of the
Galerkin matrix, Iy, can be formally expressed as

oo
T, = / T (@) - Erg(z) d (32)
—Cc0

where the subscripts p and g refer to the pth and q¢th strips and
the complex conjugation is introduced to be consistent with
the inner product definition. If we now express the transverse
electric field in terms of the integral representation given by
(31) and inverting the integration order, (32) becomes

1 o * —jker
I‘pq:% c[/ Jr () e Tk

—00o

cGkg, k) - 1 g(ky)dks. (33)
Taking into account the complex nature of the &, variable and
the complex nature of the Fourier transform of the current
density Jr (which should be considered a complex function
of a complex variable), (33) can be rewritten as

1 ~ = -
Tpe = %LJT’I)(@) cGlky, k) - Jpg(ky) dky. (34)

Note that all the singularities of the integrand of (34) stem from
the poles of SDGF since .NITJ,(kw) is a uniform and analytic
function. It is also relevant to emphasize that the presence of
the double complex-conjugation in (34), and similarly in all
the problems treated in the SDA when the spectral variable is
assumed complex, has two significant effects:

1) It preserves the symmetry properties of the coefficients
of Galerkin matrix; namely, it is assured that 'y, = I‘;p
if k. is real and 'y, = Iy if &, is complex.

2) It makes the integrand in (34) satisfy the
Cauchy-Riemann conditions (except at the singularities
of the SDGF) with the integrand being a meromorphic
complex function. This requirement will assure that
C(w) can be freely deformed if no poles are crossed.
Assuming that :I:r,y(km) is analytic, the proof of the
meromorphic nature of the integrand in (34) reduces
then to show that :T;’V(kj;) is also analytic. If any of the
components of Jr,(k,) is denoted as f(z), according
to the complex variable theory this function can be
expressed in terms of a convergent series of z, namely

= ZAnz".

Note that the function
9(z) = = AL ()"

is not analytic since it is not possible to express g(z) in
terms of a series of z. However, the function

hz) = (%) = 3 Ap"

can again be expressed as another convergent series of
z (with the same convergence radius than f(z)) and
therefore f*(z*) is found to be analytic.

Once we have found the proper integrand and integration
contour of (34), this integral should be efficiently computed.
One of the most extended ways of treating (34) consists on
deforming the original integration contour into the real axis
and later to add the residues of the involved poles [15].
Nevertheless, this technique yields overflow computational
problems when the poles are located nearby the real axis
(as it often occurs). In our experience and similar to [16],
this drawback is readily overcome if we first subtract out
the contribution of the poles and this contribution is later
added. The application of this scheme makes the numerical
computation quite easy owing to the smooth behavior of the
remaining integrand. The use of some additional asymptotic
techniques is usuvally unavoidable to achieve accuracy and
reduced CPU times [14].

C. Root Searching in the Complex k,-Plane

Once all the elements of the Galerkin’s matrix have been
computed, the propagation constants of the transmission sys-
tem are obtained (for a fixed value of w) as the complex zeros
of

U(k,) = det[I'pq(k;;w)] = 0. (35)

It is important to note, upon observing (29) and (34), that
U(k,) can be expressed in terms of the following series:

CRWSEEES: ke

(36)
where each Q,,, (k) is an analytic function (no poles or branch

points). Each term of (36) shows the generic form

Qm(

e 2) S dh

(37

where ¢2, = fygz’m — k2. This latter integral defines a two-
valued function in the &k, complex plane with a branch point
at k2 = 42, (namely, when &,, = 0). If the integration path
C is defined in such a way that the pole of the integrand
denoted as £ is below C and £, above C, the multivalued
nature of (37) can be understood by observing that the two
situations illustrated in Fig. 6 correspond to two different and
indistinguishable pole locations. The function defined in (37)
shows two values (associated with the two different integration
contours) for the same value of k,.

Note that the definition of the branch cut of the Riemann
surface in the k,-plane is closely related to the choice of
the integration contour in the k.-plane. The top sheet of
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Fig. 6 Two possible integration paths corresponding to identical pole
locations.

the k. -plane (also called a proper sheet) is associated with
an integration along the entire real axis (see Fig. 6(b)) and
the second sheet (an improper sheet) with an integration
partially along the real axis (see Fig. 6(a)). Assuming the two-
valued nature of each V., (k.) term, the W(k,) function will
have infinite branch points in the £.-plane at k. = £y, .,
(m = 1,2,---). Since there are a finite number of positive
values of 7§,m and an infinite number of negative ones [4].
[7], the ¥(k.) function will have several branch points at the
real axis and infinite branch points at the imaginary axis.
Owing to the multivalued nature of ¥(k,) function, the
zero-searching process becomes much more involved than in
the single-valued case. Thus it will be necessary to analyze
the different sheets of the Riemann surface since the roots can
be located on any of them. Note that the study of the different
sheets in the A.-plane is related to the computation of (36)
with different choices of the integration contour. Nevertheless,
and in spite of the different mathematical solutions satisfying
¥(k,) = O (often one on each sheet for each mode), only
those solutions located on the causal sheets of the k.-plane
should be considered. The causal sheet in this k,-plane
comes determined by an appropriate choice of the integration
contour of (36) in the k,-plane; this contour should be chosen
according to the modal causality requirements discussed above
for the integral representation of the Green’s function. The
proposed criterion would imply that if &, is real («, = 0) the
integration path should be taken along the entire real axis and
then the causal sheet would be the top sheet. On the other hand.
if k. is complex. all those poles associated with waveguide
modes verifying fy;;”m > 0 should be properly surrounded by
the integration contour (as in the case depicted in Fig. 5).

This requirement would lead directly to the causal sheet (in
the k.-plane) where the root searching should be carried out.
Nevertheless, in our propagation problem we do not know the
actual location of the propagation constant k. until the zero-
searching process has finished; and therefore, we would have
to look for zeros in different noncausal sheets.

The usual methods of searching for complex zeros of a
complex function (integral methods based on Cauchy theorem
[17], differential methods such as Muller’s method, or those
based on single-valued decomposition [18]) work properly
only in regions where the function is analytic. Consequently, it
would be very desirable to apply some transformation to turn
the multivalued W (%) function into a single-valued function.
Unfortunately, this transformation (also the mapping of this
transformation) is very involved since ¥(k,) has infinite
branch points. However, from a practical viewpoint, we can
distinguish two cases in function of the number of waveguide
modes verifying 7, > 0 at a given frequency.

1) Only One Waveguide Mode Verifying 73. m > 0:If only
one squared transverse wavenumber is positive (at least
one always satisfies this condition), the causal sheet can
be one of the two sheets (or the two of them) related
to the first branch point k., = +£+, ;. In this case, it is
useful to introduce a new complex variable ¢ via the
transformation

k; = ¥4.18in¢. (38)

A discussion of this transformation can be found in

[5]. When (38) is applied to (36), the branch point

k. = +£v,,1 turns into a pole at +n/2 and the two
possible causal sheets of the %.-plane appear as adjacent
and periodic regions in the top sheet of the new ¢-
plane. The root searching can be then restricted to the
region bounded by 0 < Re(¢) < 27. Moreover, any
root searching method would work efficiently in this
region of the ¢-plane (eliminating previously the pole
at +m/2), which now accounts for the proper and first
improper sheets of the k. plane.

2} More Than One Waveguide Mode Verifying ’yg’m >0
Assuming that v waveguide modes verify ﬁm >0
(m = 1,---,v), the causal sheets can be ‘both the
top sheet and the 2vth sheet. These two sheets are
associated, respectively, with an integration contour in
the k.-plane along the real axis (see Fig. 7(a)) and
with an integration contour surrounding the » poles
corresponding to positive values of fy;m > 0 (see Fig.
7(b)). This means that if the final value of %, is real
(and consequently k2 > +2 ), the causal sheet is the top
one and if k. is complex', the causal sheet is therefore
the 2vth sheet. To our knowledge, there is no easy
transformation that can map the two causal sheets of
the k.-plane into adjacent regions in a new complex
plane. Therefore, the zero-searching process should be
made directly on the first sheet or on the 2vth sheet of
the %.-plane.
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Re(k,)

Im(k,)

®)

Fig. 7. Integration contours corresponding to the two possibilities of
causal integral representations when there are v positive squared waveguide
wavenumbers.

III. NUMERICAL RESULTS

In this section, we present some numerical results obtained
by a computer code implementing the theory of the preceeding
section. The results so obtained may differ from the previously
published data since other authors could have used different
criteria in the definition of the inversion contour of the Fourier
transform and in the application of the Parseval’s theorem.
First for comparison, we analyze the inhomogeneous stripline
previously treated in [19]. This work studied and confirmed
experimentally the existence of a leaky dominant mode in a
stripline with a small airgap above the strip. Fig. 8 shows
our results for the normalized (to ko = w,/€ppio) propagation
constants of the dominant leaky mode together with those
extracted from [19, Fig. 2 ]. A good agreement is found for the
two sets of numerical results in the whole analyzed range. This
numerical agreement is expected because the present structure
has only one waveguide mode with 'ng > 0. In this case,
most of the published works (including the present paper)
follow the same criterion for the definition of the inversion
contour. On the contrary, as was noted above, numerical and
qualitative discrepancies could appear when more than one
waveguide mode satisfies ,ygz > 0. A relevant feature of
the results in Fig. 8 is the presence of values of the leaky
mode phase constant 3, greater than the wavenumber of the
fundamental waveguide mode. This unconventional leakage
can be explained if the nonuniform nature of the modes in (2.1)
is considered. From (21) and (17)—(20), the phase constant of
the dominant waveguide mode excited by the leaky line mode

T T T T ] T T T T 1 T T T T | T T T T ] T T T T I 0.05E
©n1.6
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a
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Fig. 8. Normalized phase constant (solid line) and attenuation constant
(dashed 'line) of the leaky mode for an inhomogeneous stripline at 3 GHz
versus the height of the airgap (h = 4.45 mm; w = 6.35 mm). Solid and
dashed lines: our results; asterisks and crosses: results of [19]; dotted line:
normalized wavenumber; and dotted—dashed line: normalized phase constant
of the dominant nonuniform parallel-plate mode.

is 81 (given by (19) with m = 1) rather than -y, ;. The values
of 31, obtained from (17)—~(20), are also shown in Fig. 8. It
can be seen how the leaky line mode is always faster than the
dominant nonuniform background waveguide mode.

An example of the differences that can be found when
different inversion contours are used is shown in Fig. 9. This
figure shows the differences found in the propagation constant
characteristics of the leaky mode of a pair of coupled strips.
The (a) family of curves accounts for the real and imaginary
parts of the complex propagation constant of the leaky mode
when the inversion contour is chosen as that surrounding only
the pole associated with the dominant parallel-plate mode.
These curves could not have physical meaning according to
the viewpoint proposed here since they have been computed
by violating the criterion of the outgoing power. On the other
hand, the (b) family of curves accounts for the behavior of
the complex propagation constant of the leaky mode when
the inversion contour surrounds all the poles associated with
positive values of the squared transverse wavenumber of the
parallel-plate waveguide. Although the phase constants 3, of
the different waveguide modes corresponding to 'ygz,m >0
have not been plotted, it has been checked that the leaky
line mode is always faster than all the excited nonuniform
background waveguide modes.

Finally, Fig. 10 illustrates the leakage characteristics of one
of the fundamental modes of a pair of noncoplanar strips as a
function of the center separation. This figure shows both the
normalized phase and attenuation constants for three values of
frequencies (only one parallel-plate mode is above cutoff for
the dimensions and frequencies analyzed). The three different
curves corresponding to the behavior of 8, /ky for the three
values of frequencies appear superimposed, that is, the phase
constant of this mode is hardly dispersive. On the contrary,
it can be seen how the leakage losses are highly affected by
the frequency. This fact may seriously restrict the technolog-
ical application of this type of noncoplanar configuration in
miniaturized microwave devices even for typical transversal
dimensions much less than the vacuum wavelength. We have
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found (similarly to [2]) that many noncoplanar multiconductor
configurations show this trend to leak laterally. Consequently,
the numerical study of the propagation characteristics in these
laterally open and noncoplanar structures should be carefully
made. In particular, the possible leakage effects should be
predicted in order to either prevent or take advantage of them.

IV. CONCLUSION

This work has analyzed the possible definitions of the
inversion contour of the Fourier transform when this integral
transform is applied to the analysis of the electromagnetic
propagation in covered planar transmission systems with trans-
lation symmetry. We propose an approach starting from that
integral representation of the spatial LSE/LSM scalar-mode
Green’s function which only comprises waves transferring
energy away from the source. This integral representation
can be later transformed to be viewed as an inverse Fourier
transform. Thus it renders the inversion contour of the Fourier
transform in an unambiguous and direct way. For stratified
structures, the spectral dyadic Green’s function for complex
values of the spectral variable can be easily computed as

the analytical continuation of those spectral dyadic Green’s
functions previously reported in the literature for real values
of the spectral variable.

Some relevant theoretical and numerical aspects related to
the application of the Galerkin method in the spectral domain
to the study of the leaky regime have been discussed. Some
attention has also been devoted to the zero-searching method
since the complex propagation constants of the leaky modes
appear on different sheets of a multivalued function.

Finally, some numerical results show a good agreement be-
tween our results and previously published data. We have also
presented an example to show the quantitative and qualitative
differences that can be found for the propagation characteris-
tics when different choice of the inverse Fourier contour are
used. In addition, the leaky behavior of noncoplanar covered
structures has been analyzed, the high tendency of these
structures to leak laterally even for typical dimensions much
less than the vacuum wavelength has been found.

APPENDIX

Let E,H be the fields of a nonuniform mode which
verifies certain boundary condition in the y-direction and
whose transverse complex propagation constant is given by
kr = kga, + k,a,. The Poynting vector in the z-direction,
S, is given by

S, = EyH; — E.H}. (39)

If only LSM-modes are now considered, (39) reduces to

S¢ = EyH:. From VX H = jwek and V- H = 0, it
follows that
B=—Yp ey - Fn wo
we we ke
and substituting (40) into (39) .
k*
St = —=— (k2 + k2)|H.|*. (41)

=7 oelko|?

Upon considering that the squared transverse wavenumber
is v2 = k2 + k2 (similar to (12)), the z-component of the
Poynting vector associated with LSM-modes can be written as

1
£ = ———|H.|*(72K). 42
S:n (.d€|k$|2| zl (’ng:c) ( )

Following a similar‘procedure for LSE-modes, it is found that
St = ———| B2 (72k%). 43
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