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Integral Representation of Spatial Green’s

Function and Spectral Domain Analysis

of Leaky Covered Strip-Like Lines
Francisco Mesa and Ricardo Marqtks

Abstract—This paper studies the possible integral representa-

tions of the Spatial Dyadic Green’s Function of a laterally
open but covered multilayered planar waveguide with translation

symmetry. Among all of integral representations, we especially

focus on that unique representation which comprises only out-

going waves (energy transferred from the sonrce to infinity in
case lateral radiation was present). We propose this specific
integral representation as the most appropriate in the Spectral

Domain Analysis of strip-like structures when these are assumed
to be guiding/teaky systems with translation symmetry. This
integral representation directly provides the integration contour

to be used in the definition of the inverse Fourier transform.

Some aspects concerning the use of the nonconventional Fourier
transform are discussed in connection with the application of the

Method of Moments. It is also highlighted that the dispersion
relation of the strip-like configuration is expressed in terms of the

zeros of a multivalued complex function. This fact becomes rele-

vant when searching for zeros out of the spectral sheet (i.e., zeros

associated with leaky modes). Finally, some numerical results are
presented. These computed values show good agreement when

compared with some previously published data. The inflnence
of different definitions of the inverse integration contour on
the propagation characteristics of a pair of coplanar coupled
strips is also investigated. Computed data will show the leakage

characteristics of a pair of noncoplanar strips.

I. INTRODUCTION

T HE ANALYSIS of electromagnetic propagation in lat-

erally unbounded planar layered structures with top and

bottom impenetrable walls is treated once again in connection

with the leakage phenomenon. Many examples can be found

in the literature dealing with this topic. i.e., [1]–[3]. Two

different approaches have been used to analyze the leaky

regime: mode-matching and Spectral Domain Analysis (SDA).

Each technique accounts for a different representation of

the electromagnetic field: a discrete sum of modes (series

representation for mode-matching) and a continuous sum

(integral representation for SDA) [4], [5]. From a practical

point of view, the main differences between these two tech-

niques lie in their computational performance (although in

practice the use of suitable computational strategies may affect

this performance significantly). A crucial point in the two

approaches concerns the choice of the waveguide modes in

which the electromagnetic fields are expanded (in the SDA,
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this also determines the inversion contour of the Fourier

transform). Different criteria to elucidate this choice have

been proposed in the literature, see for example [1], [2], [6].

Nevertheless, to our knowledge, extensive discussion on this

fundamental topic has not been reported in the literature. In

this paper, we again raise this issue following the discussion

presented by the authors in [3]. The problem will be initially

posed in the spatial domain, instead of being posed in the

spectral domain, in order to consider the current density on

the strips as source of the electromagnetic field rather than a

boundary condition (such as considered in the conventional

SDA). This approach makes possible a fruitful application of

power caasali~ reqait-ements, which would provide the most

realistic description of the behavior of the electromagnetic

field in systems with translation symmetry. Thus a basic

assumption is that the line field should be built only with those

waveguide modes carrying power outward from the source.

This requirement besides the consideration of the nonuniform

nature of the waveguide modes will constitute the core of the

present approach.

Once the above choice is made, we apply the Method

of Moments in the spectral domain to study the lines. The

problem is posed in the spectral domain because of its well-

established ability to deal with general multilayered media as

well as multiconductor/multislot configurations. The treatment

of the leaky regime by means of the above method gives rise

to meaningful changes with respect to the treatment of the

conventional guided regime. The most significant changes are

also discussed in some extent. Specifically. the application of

the Parseval’s theorem in the SDA is reviewed to take into

account the complex nature of the spectral variable and some

attention is later devoted to the search for the complex roots

of the resulting determinantal equation. These complex zeros

account for the complex propagation constants of the line and

are found to be located at different sheets of a multivalued

function. This fact complicates the zero-searching process and

makes necessary the use of more efficient strategies. Finally,

comparison with previously published results is presented and

some results are reported for the propagation characteristics

of a pair of coupled strips both in coplanar and noncoplanar

configurations.

II. ANALYSIS

Let us review in this section the basic steps involved in

the SDA of tbe bound and leaky propagation regimes of a
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Perfectly conducting wall

Fig. 1. Cross-section of a planar multiconductor transmission system embed-
ded in a Iossless layered medium with top and bottom perfectly conducting

walls.

planar transmission system like that shown in Fig. 1. This

transmission system is composed of noncoplanar conducting

strips embedded in a layered lossless medium bounded by

top and bottom perfectly conducting plates. The present work

will be basically focused on the study of lateral radiation

and in this way, the presence of these conducting plates is

especially suitable since they prevent spatial radiation and

make the mathematical treatment easier. It should be noted that

if the usual time-harmonic regime is assumed, the treatment

of the covered and the ~ncovered cases conceptually differs

because the uncovered case is not merely the limiting case of

the covered one when the top conducting plate is removed to

infinity. This implies that the lateral radiation of the covered

and uncovered cases may be significantly different. Thus a

deeper insight into the lateral radiation mechanism could be

achieved if the covered case is directly studied instead of

analyzing that part of the total radiation corresponding to the

surface waves present in the uncovered case.

First, we discuss the integral representatioti of the spatial

Green’s function of the structure of Fig, 1 without conduc-

tor strips; the remaining layered waveguide will be called

the background waveguide. This integral representation will

determine the proper inversion contour to define the inverse

Fourier .tiansform. Later, some relevant aspects related to the

application of the Method of Moments and the search for

complex roots are considered.

A. Integral Representation of Green’s Function

Consider the transmission system of Fig. 1, The sub-

strate of this structure is assumed to be lossless and

isotropiclanisotropic but fwith rotational symmetry around

they y-axis (or in” the (~, z)-plane, which will be denoted

as the transverse plane and represented by the subscript T).

As is well known, the transverse (to y) electric and magnetic

fields lZT, IIT of the above structure can be derived from

certain scalar-mode functions if the layered medium is made

of isotropic or anisotropic (satisfying the aforementioned

symmetry condition) layers [4], [5], [7]. The introduction of

these scalar-mode functions permits the definition of LSE

and LSM modes. Thus we first deal only with scalar-mode

functions.

Our first purpose will be the computation of the dyadic

Green’s function, G(z, y; z’, y’), which relates the transverse

(to y) part of the electric field to surface current, JT(z, y),

contained in some transverse y = y’ plane of the structure

in Fig, 1

&(z, Y) =
/

G(z, Y;Z’, y’) . ~q-(z’, ~’) dx’. (1)

We will assume a source and field dependence for the z and

t variables of the type e~(wt–~”’), where kZ = /?= + j~z

represents the complex propagation constant along the z-

direction and w the angular frequency. The usual case of losses

along the z-axis is accounted for by assuming ~z > 0 and

az < 0.
As mentioned above, any field in the waveguide can be

derived from y-directed LSE and LSM modes. This means that

the dyadic Green’s function can also be derived from certain

scalar-mode Green’s functions. The derivation of these scalar

Green’s functions are readily accomplished if the sources and

jields of our problem are redefined. The new sources are

denoted as F, and FW, and the new jields as WE and WP,

in such a way that

Fe = VT . JT = –~wp (2)

FW = (VT x JT) . ay (3)

{3EY
W, = VT. ET = ----- (4)

WA = VT x ET = --]wp,Hy (5)

This transformation is essentially the same as that proposed in

[8] (TTL method) when the problem is posed in the spectral

domain.

The new We and WW jields satisfy the boundary conditions

imposed on the LSM and LSE modes separately. Thus the use

of the transformation (2)–(5) diagonallizes the dyadic Green’s

function

/
‘w(x) Y) = 9e,u(~, Y;z’,Y’)F,,M(z’, y’) dz’ (6)

where ge,P(z, y; x’, y’) are the new scalar Green’s functions

and subscripts c and p will refer to ILSM and LSE modes,

respectively. If the involved layered medium has rotational

symmetry around the ~-axis, this diagcmalization works prop-

erly when the layers are isotropic andlor uniaxial anisotropic

[9]. If gyrotropic layers are present, the transformation (2)-(5)

yields nondiagonal expressions for the Green’s dyad and

consequently scalar Green’s functiom cannot be defined in

this case. Nevertheless, a similar analysis could still be ac-

complished if the vectorial nature of sources and fields (as

well as the dyadic nature of the Green’s function) is taken

into account.

The sca’lar-mode Green’s function g,,,u (x, v; x’, g’) (generi-

cally denoted as g) is found to be the solution of the following

scalar-wave equation:

[-

(92 82

(3X2 +@ 1+(K2– k:) 9(Z, y; x’> ‘u’)



830 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. d3, NO 4. APRIL 1995

(K2 = W2CL~)when subjected to the appropriate boundary

conditions.

The two-dimensional scalar-mode Green’s function g(x, y;

Z’, Y’) can be represented via two associated characteristic one-

dimensional Green’s functions gz(~, z’) and gg (g, y’) [4], [s]

as

where & +Ag = fiz – 1$ = I’z and Cz is an integration contour

in the complex & plane that encloses, in the positive sense,

all the singularities of gm and excludes all the singularities of

gg; similarly> GY encloses only the singularities of gg.
Owing to the cumbersome calculations involved in the

treatment of the general structure of Fig. 1, we will first

analyze a simpler isotropic and homogeneous parallel-plate

waveguide. The analysis of this structure will clarify the main

steps of our approach since the procedure is basically the same

as that necessary for the general case.

If, for example, we are interested in the LSM-mode scalar

Green’s function, g, can be expressed as [4]

1 f ;p–j&lx–x.’l

ii’ f.. ‘- MC
g.(z, y;l+, y’) = —

A

Singularities of lx plane

w’-k)
x--------------x-----------x--------------x------------x

. . . L Lx,, Lx,,X,3
c,

f -. —.-2— —-.

Top sheet: Im(fi,)cO

Fig. 2. Integration path, C~, on the spectral sheet of the Ar -plane.

and exclude all the poles of gg, as shown in Fig. 2. The above

choice of the branch cut is simply one possible definition.

From our standpoint, the most convenient choice should be

decided on physical grounds.

Note that for z # r? (i.e., outside the line source), the

integral (8) over the radius infinity is zero provided the

condition reported in [5, p. 278] is fulfilled. Therefore, the

integral contour can be alternatively closed following the circle

IAZ \ ~ cc on the spectral sheet. The integral representation

of g%(z, z’,&) is thus transformed into a sum of residues at

the poles on the spectral sheet. that is

The integrand in (8) is a two-valued complex function in the

A.-plane with a branch point at & = O and poles located at

~Z,~ = 172– (mT/b)2 on both sheets of the Riemann surface.

The ~~,~ poles can be rewritten as

A 2
z,m = Tg, m – k; (9)

where y:, ~ = fi2 – (rnn/b)2 is the squared transverse

wavenumber of the nath source-free LSM-mode of the ho-

mogeneous parallel-plate waveguide. Note that Tg,~ would

directly account for the phase constant if the corresponding

mode is uniform. On the contrary. as will become apparent

later, this variable should not be identified as the phase

constant of a nonuniform mode [10] (we denote a nonuniform

waveguide mode as that propagating in a given direction and

attenuating/growing in the perpendicular one).

As noted in [5, p. 278], the two-valued function,

g. (x. x’, k ), must be defined in such a way that it decays
to zero when I&I goes to infinity on the top sheet. This
requirement is fulfilled when the branch cut tends for large

values of Re (~x ) to the positive real axis but an infinitesimal

distance above it. A usual choice of this branch cut defines

the top sheet of the Riemann surface defined by ~ function

in (8) as that where

Im& <O. (lo)

This sheet is usually known as spectral sheet. Since the

integration path in (8) must enclose only the singularities of

gx, C. must then enclose the branch cut in the positive sense

where

k d.,?72 = t%,m+j%,?n= Y:,m – k:. (12)

This leads to a mode expansion of the scalar Green’s function

whose modes are considered with

The fields due to a line source at ~ = x’ are then written as a

superposition of evanescent (in the x-direction) modes of the

background waveguide. Since all these modes also propagate

along the z-direction with a propagation constant k,., they are

actually rzonurzifornt modes.

The above expansion of the fields is found appropriate for

the analysis of the purely propagating modes (namely, the

bound modes) of the transmission system of Fig. 1. Neverthe-

less, if we are interested in the analysis of the leaky regime,

the above expansion does not properly describe the growing

field behavior for Iz I ~ cm. Therefore, a different integral

representation (i.e., a different branch cut choice) should be

considered. As was noted above, any other integration contour

enclosing a different branch cut but having the same initial and

final points (i.e., gZ (z, z’, AZ) ~ O when I&I - m) would

provide a mathematically consistent integral representation of

the Green’s function, and this different integral representation

would also lead to a different modal expansion. We are only

interested in that mathematical solution compatible with the

fact that point (z’, y’) be a source rather than a sink. In other

words, if the propagation constant of the line along z is real
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(a, = O), the above condition is fulfilled if Im (kz,m) <0 and

therefore all the modes behave like evanescent waves along the

x-direction. If k, is assumed to be complex, the propagation

constant of each mode along the x-direction, kZ,~, is also

complex (k., ~ = ~Z,m + jczZ,m) and consequently energy

is transfen-ed in the x-direction by all waveguide modes. In

this case, point (z’, y’) constitutes a source provided that the

modal expansion (11) is formed exclusively by modes carrying

power outward from this point. The criterion to decide which

modes should be included in (11) must then be related to the

direction of the power flux associated with each nonuniform

mode. This criterion will be named the criterion of outgoing

power. Since the same question arises concerning the proper

expansion of the field in terms of waveguide modes and the

proper choice of the branch cut, we first consider the discrete

mode expansion of the scalar Green’s function—--see (11 )—to

decide later the integration contour on physical grounds.

Taking for simplicity Z’ = O,y’ = O, the scalar-mode

Green’s function, g. (T-) = g. (x, y) exp (–jkZ.z), can be writ-

ten as the following expansion in terms of nonuniform and

orthogonal LSM-modes:

cc

9c(~) = ~ am(y)e–~f~=,~~Z+~z~z).p (13)
m=l

where p = Ixlac + zaz. If the complex wavevector km =

kz,maz + kzaz is defined, the above expression is rewritten as

(14)
77Z=1

with km satisfying the equation

k:m+k; =km . km = ~:,m . (15)

The km complex vector can also be written as a sum of a real

and a complex vector

km = /?mum + jffmvm (16)

where ~mum = /?Z,maZ + /3zaz and Qmvm = azjmaz + azaz

are real vectors whose unitary vectors Um and Vm define the

directions of phase propagation and amplitude attenuation,

respectively. From (15) and (16), the above quantities are

related by

D’ - Q:,m =z,m V;,m - (/2 -d) (17)

pz,ma.,m = –pzffz (18)

P: = P;>z + P: (19)

~2 = ~2
m ~,z + C&, (20)

which implies that Um . Vm = O. This latter relation is typical

for nonuniform plane waves in lossless media (see, for ex-

ample, [10, pp. 320–334]) and it establishes the orthogonality

between the propagation and attenuation directions.

The expansion given in (14) can also be viewed as the

following superposition of infinite nonuniform modes:

cc

9c(~) = ~ am(y)e ~.>ml~l+@.~e-~(6.,ml~l+P=~) (21)
m=l

where the presence of the modulus lx\ in (21) accounts for

the symmetry of the expansion at both sides of the source

(z’ = O). Note that all the nonuniform modes in (21) are slower

than the leaky line mode; namely, its phase constants & are

always greater than the leaky mode phase constant /3—see

(19). Therefore, all the waveguide modes in (21) satisfy the

phase match condition.

The above superposition of nonuniform modes fulfills the

criterion of outgoing power provided that all the modes in

the expansion carry power outward from the source. This

condition will be satisfied when the z-projection of the real

part of the Poynting vector associated with each mode S.,m

is positive. It can be readily shown (see the Appendix) that

P x,m = Re (S.,m) = C+’y~,m~Z,m (22)

where C+ is a positive quantity. In view of ( 18) and providing

that sign (/3$,m) = sign (aZ,m) (since sign (~.) = –sign (a.)

by hypothesis), the criterion followed to include a mode in

expansion (11) can be expressed as

sign (7~,m~z,m )=+. (23)

Since T~,m is a real number in losslesg waveguides, the above

criterion implies that those modes associated with ~~,m > 0

should be considered with Im (k%,m) > O; and similarly those

corresponding to ~~)m <0 with Im (k,,,n) <0.

Once the modal expansion has been anrdyzed, the inte-

gration contour of the integral representation (8) should be

defined so that both representations are equivalent. This can be

achieved if the branch cut is defined in such a way that all the

poles associated with the modes in the. residue expansion are

located on the top sheet. Then, applying the Cauchy integral

theorem, the correct modal expansion is recovered. This top

sheet will be called causal sheet and verifies that

~~,~ Im (&);> o (24)

for all values of m.

For example, consider the disposition of the A.,m poles

shown in Fig. 3, where ~~,1 > Re (k:) > 7:,2 > 7~,3 > “. .

(kz complex). Assuming that only the first two poles verify that

~~,n >0 (m = 1, 2), an integration patlh, C’m,that would yield
a causal integral representation of the scalar mode Green’s

function is illustrated in Fig. 3. Another (but equivalent)

causal integral representation can be obtained by following a

different approach. This approach consists on starting from the

definition of the spectral sheet (see its definition in (10)) and

then to deform the integration path according to the criterion

of the outgoing power. In this case, only the ~z,~ poles

associated with -y;, ~ <0 should be considered in the spectral

sheet and those associated with ~~,~ >0 in the bottom sheet

(and consequently, they should be then excluded in the top

sheet). The integration contour and the above described branch

cut are shown in Fig. 4.
If the transformation k; = & is applied to (8) (in reference

to any of the integral representations shown in Figs. 3 and 4),

ge turns into the following inverse Fourier transform:

g.(x, y;z’, y’) = ~
!zfl c(m)

~E(k~> Y>Y’; k.)e–3~’(Z–X’J dkx

(25)
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Singularities of
A

L$(rz-k)

------x-------- y-. x------;-x-------
● . . I’g,< o YE3< o

1“ > L
●

I

LTop sheet: yg~ Im(~m)>O II
I

I
Fig. 3. Integration path Cz on the causal sheet of the ~Z -plane.

A

Singularities of & plane

gyw’-u

---)C---------;--X---------2X
. . . y,, <o yg3<

I
Fig. 4. Integration path C’~ equivalent to that of Fig. 3 when the top sheet is
defined as the spectral sheet. (– – – ––): path in the botton sheet; (— ):
path in the top sheet.

where

can be considered the spectral scalar-mode Green’s func-

tion with the corresponding inverse integration contour C(w)

shown in Fig. 5 (an analogous procedure for the LSE-modes

wotdd lead to a similar expression for gP). It should be noted

that the inverse integration contour is only a function of the

operating frequency; namely, C(w) should properly surround

all the poles corresponding to positive squared transverse

wavenumbers of the background waveguide. Those poles are

located in the shadowed region of Fig. 5 and this region is

only determined by the /?~,m – a; ~ = flj – C& hyperbolas.

Consequently, C(W) does not depend on the height andlor

material characteristics of the layer. These parameters only

affect the total number of poles surrounded by the previously

determined integration contour.

The basic steps of the proceeding development also applies

if the general structure of Fig. 1 had been considered. The

only changes would appear in a more cumbersome algebraical
expression of gY(Y, y’; ~V) owing to the boundary conditions

at the different interfaces to be now satisfied by g. (y, y’; ~V).

Provided that the scalar LSM- and LSE-mode decomposition

holck, the functions ijc,w [5], [7] can be still expressed in a

closed form similar to (26)

Fig. 5. Integration contour C’ in the k. -pPane.

where ~~,m now accounts for the squared transverse wavenum-

bers of the LSE- and LSM-modes of the general background

waveguide and ,f~~ (y) for the corresponding e, p eigenfunc-

tions along the y-direction.

Once the spectral scalar-mode Green’s functions and the

proper inversion contour to be used in the Fourier transform

have been determined, the spatial dyadic Green’s function

(1) G(z, y; z’, y’) of the general waveguide is obtained by

reversing the transformations (2)–(5). However, this process

is more readily accomplished in the spectral domain and thus

we first reverse the transformation in the spectral domain.

Later, G(z, y; x’, y’) can be recovered by means of its integral

representation

G(z, ~;i, y’) = ~
/-

@kZ, y, y’; kZ)e-~~zZ dkZ (28)
2T c(w)

where the spectral dyadic Green’s function (SDGF) is given by

[1G(kz,:y, y’; k.) = [Q]-l o ~ ;& ~[Q] (29)

with [Q] being the matrix associated with the transformation

(2)-(5) in the spectral domain, that is

(30)

and the inversion contour C(w) is that found for the scalar

Green’s function.

Besides the above formal procedure to obtain G(kZ, kz),

there are many examples in the literature concerning the

computation of the SDGF of layered planar structures (see

[11]-[13] and references therein). In most of these methods,

the problem is directly posed in the spectral domain and

then the surface current density is considered as a boundary
condition rather than a source. These methods are found

advantageous since they provide the SDGF for very general

structures (even if LSE/LSM-mode decomposition is not possi-

ble). However, they do not say anything about the appropriate

inversion contour. This is the main reason why the source has

been explicitly taken into account in the present analysis.

The spatial transverse (to y) electric field, J!3T(x, y)e-~~~”,

produced by a certain transverse current distribution,

J~(z, y)e–~~’z, can then be expressed (after applying

Parseval’s theorem) as

El-(z, IJ) = ~
/

G(kZ, k.) . ~T(kZ) e-~kxx dkZ. (31)
2W c(u)
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In the above expression, G(kZ, kZ) represents the analytical

extension of the usual SDGF (which could be readily com-

puted following the EBM technique shown in [13], [14]) and

C(U) is that integration contour satisfying the criterion of

outgoing power discussed above.

B. Method of Moments

As is well known, the application of Galerkin’s method to

tie analysis of the transmission system shown in Fig. 1 leads

to a homogeneous matrix eigenvalue problem. The elements

of the eigenvectors of this problem are the coefficients of the

expanded excitation and the eigenvalues, which are the zeros

of a determinantal function, represent the modal propagation

constants of the transmission system. Each element of the

Galerkin matrix, I’ p~, cm be formally expressed as

Pm

‘I%’= / ‘;,P(Z)“ ‘T,q($) ~~ (32)
J–m

where the subscripts p and q refer to the pth and qth strips and

the complex conjugation is introduced to be consistent with

the inner product definition. If we now express the transverse

electric field in terms of the integral representation given by

(31) and inverting the integration order, (32) becomes

rpq= ~ /[rJ~,P (x) e-~kx’ dx
27r ~ .m 1

“ G(kz,k.) . ~T,q(kJdkz. (33)

Taking into account the complex nature of the k. variable and

the complex nature of the Fourier transform of the current

density ~T (which should be considered a complex function

of a complex variable), (33) can be rewritten as

Note that all the singularities of the integrand of (34) stem from

the poles of SDGF since ~T,V (kZ ) is a uniform and analytic

function. It is also relevant to emphasize that the presence c)f

the double complex-conjugation in (34), and similarly in all

the problems treated in the SDA when the spectral variable is

assumed complex, has two significant effects:

1)

2)

It preserves the symmetry properties of the coefficients

of Galerkin matrix; namely, it is assured that rP~ = r;P

if kz is real and 17P~= I’qP if kz is complex.

It makes the integrand in (34) satisfy the

Cauchy–Riemann conditions (except at the singularities

of the SDGF) with the integrand being a mesomorphic

complex function. This requirement will assure that

C(U) can be freely deformed if no poles are crossed.

Assuming that ~T,. (kz) is analytic, the proof of the

mesomorphic nature of the integrand in (34) reduces

then to show that J;,,, (k;) is also analytic. If any of the

components of ~T,v (k. ) is denoted as ~(.z), according

to the complex variable theory this function can be

expressed in terms of a convergent series of z, namely

Note that the function

g(.z’) = f’(.z

INES

= xA:(~*)”
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is not analytic since it is not possible to express g(z) in

terms of a series of z. However, the function

can again be expressed as another convergent series of

.z (with the same convergence radius than ~(z)) and

therefore ~“ (z*) is found to be analytic.

Once we have found the proper intcgrand and integration

contour of (34), this integral should be efficiently computed.

One of the most extended ways of treating (34) consists on

deforming the original integration contour into the real axis

and later to add the residues of the involved poles [15].

Nevertheless, this technique yields over-ow computational

problems when the poles are located nearby the real axis

(as it often occurs). In our experience and similar to [16],

this drawback is readily overcome if we first subtract out

the contribution of the poles and this contribution is later

added. The application of this scheme makes the numerical

computation quite easy owing to the slmooth behavior of the

remaining integrand. The use of some additional asymptotic

techniques is usually unavoidable to achieve accuracy and

reduced CPU times [14].

C. Root Searching in the Complex kz-Plane

Once all the elements of the Galerkin’s matrix have been

computed, the propagation constants of the transmission sys-

tem are obtained (for a fixed value of U) as the complex zeros

of

Iil(kz) = det [17Pq(kZ;w)] = O. (35)

It is important to note, upon observing (29) and (34), that

V(kz ) can be expressed in terms of the following series:

where each Qm (k. ) is an analytic function (no poles or branch

points). Each term of (36) shows the generic form

(37)

where & = ~~,n — k;. This latter integral defines a two-

valued function in the kz complex plane with a branch point

at k; = TL (namely, when f~ = O). If the integration path
C is defined in such a way that the pole of the integrand

denoted as [~ is below C and (_G above C, the multivalued

nature of (37) can be understood by c)bserving that the two

situations illustrated in Fig. 6 correspond to two different and
indistinguishable pole locations. The function defined in (37)

shows two values (associated with the two different integration

contours) for the same value of k..

Note that the definition of the branch cut of the Riemann

surface in the k. -plane is closely related to the choice of

the integration contour in the kx-plane. The top sheet of
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Fig. 6 Two possible integratmn paths corresponding to Identical pole
locations,

the kZ-plane (also called a proper sheet) is associated with

an integration along the entire real axis (see Fig. 6(b)) and

the second sheet (an improper sheet) with an integration

partially along the real axis (see Fig. 6(a)). Assuming the two-

valued nature of each Tm (k= ) term, the U (k=) function will
have infinite branch points in the kz-plane at k, = ~~g,~

(m = 1,2, . . .). Since there are a finite number of positive

values of -f~,~ and an infinite number of negative ones [4].

[7], the IU(k. ) function will have several branch points at the

real axis and infinite branch points at the imaginary axis.

Owing to the multivalued nature of V (k, ) function, the

zero-searching process becomes much more involved than in

the single-valued case. Thus it will be necessary to analyze

the different sheets of the Riemann surface since the roots can

be located on any of them. Note that the study of the different

sheets in the k,-plane is related to the computation of (36)

with different choices of the integration contour. Nevertheless,

and in spite of the different mathematical solutions satisfying
V (k, ) = O (often one on each sheet for each mode), only

those solutions located on the causal sheets of the k. -plane

should be considered. The causal sheet in this kZ-plane

comes determined by an appropriate choice of the integration

contour of (36) in the kZ-plane; this contour should be chosen

according to the modal causality requirements discussed above

for the integral representation of the Green’s function. The

proposed criterion would imply that if kZ is real (ct. = 0) the

integration path should be taken along the entire real axis and

then the causal sheet would be the top sheet. On the other hand.

if k, is complex, all those poles associated with waveguide

modes verifying ~~,~ >0 should be properly surrounded by
the integration contour (as in the case depicted in Fig. 5).

This requirement would lead directly to the causal sheet (in

the kz-plane) where the root searching should be carried out.

Nevertheless, in our propagation problem we do not know the

actual location of the propagation constant ks until the zero-

searching process has tinished; and therefore, we would have

to look for zeros in different noncausal sheets.

The usual methods of searching for complex zeros of a

complex function (integral methods based on Cauchy theorem

[17], differential methods such as Muller’s method, or those

based on single-valued decomposition [18]) work properly

only in regions where the function is analytic. Consequently, it

would be very desirable to apply some transformation to turn

the multivalued V (LZ ) function into a single-valued function.

Unfortunately, this transformation (also the mapping of this

transformation) is very involved since V (k, ) has infinite

branch points. However, from a practical viewpoint, we can

distinguish two cases in function of the number of waveguide

modes verifying T~,m >0 at a given frequency.

1) Only One Waveguide Mode Verifying ~~,~ >0: If only

one squared transverse wavenumber is positive (at least

one always satisfies this condition), the causal sheet can

be one of the two sheets (or the two of them) related

to the first branch point kZ = +~~,1. In this case, it is

useful to introduce a new complex variable q$ via the

transformation

A discussion of this transformation can be found in

[5]. When (38) is applied to (36), the branch point

k. = +Vg)l turns into a pole at +7r/2 and the two
possible causal sheets of the h,-plane appear as adjacent

and periodic regions in the top sheet of the new @

plane. The root searching can be then restricted to the

region bounded by O < Re (~) < %r. Moreover, any

root searching method would work efficiently in this

region of the q!-plane (eliminating previously the pole

at +7r/2), which now accounts for the proper and first

improper sheets of the k. plane.

2) More Than One Waveguide Mode Verifying ~~,m > 0 :

Assuming that u waveguide modes verify y~,~ > 0

(m = 1, ~. . . v), the causal sheets can be both the

top sheet and the 2vth sheet. These two sheets are
associated, respectively, with an integration contour in

the kz-plane along the real axis (see Fig. 7(a)) and

with an integration contour surrounding the v poles

corresponding to positive values of ~~,n > 0 (see Fig.

7(b)). This means that if the final value of k, is real

(and consequently k: > ~~,1), the causal sheet is the top

one and if k: is complex, the causal sheet is therefore

the 2vth sheet. To our knowledge, there is no easy

transformation that can map the two causal sheets of

the kZ-plane into adjacent regions in a new complex

plane. Therefore, the zero-searching process should be

made directly on the first sheet or on the 2vth sheet of

the k,,-plane.
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(a)

Im(kx)

II
cv+

Re(kx)

(b)

Fig. 7. Integration contours corresponding to the two possibilities of

causat integrat representations when there are v positive squared waveguide

wavenumbers.

III. NUMERICAL RESULTS

In this section, we present some numerical results obtained

by a computer code implementing the theory of the preceding

section. The results so obtained may differ from the previously

published data since other authors could have used different

criteria in the definition of the inversion contour of the Fourier

transform and in the application of the Parseval’s theorem.

First for comparison, we analyze the inhomogeneous stripline

previously treated in [19]. This work studied and confirmed

experimentally the existence of a leaky dominant mode in a

stripline with a small airgap above the strip. Fig. 8 shows

our results for the normalized (to k. = w-) propagation

constants of the dominant leaky mode together with thclse

extracted from [19, Fig. 2 ]. A good agreement is found for the

two sets of numerical results in the whole analyzed range. This

numerical agreement is expected because the present structure

has only one waveguide mode with -y: > 0. In this case,

most of the published works (including the present paper)

follow the same criterion for the definition of the inversion

contour. On the contrary, as was noted above, numerical and

qualitative discrepancies could appear when more than one

waveguide mode satisfies y; > 0. A relevant feature of
the results in Fig. 8 is the presence of values of the leaky

mode phase constant /?. greater than the wavenumber of the

fundamental waveguide mode. This unconventional leakage

can be explained if the nonuniform nature of the modes in (2,1)

is considered. From (21) and ( 17)–(20), the phase constant of

the dominant waveguide mode excited by the leaky line mode

1.24’”’’’’’’’’’’’’’’’” ~

0 1 2 4 5
5(mmj

0.02:

N.-

O.olg

6

0=

Fig. 8. Normalized phase coustant (solid line) and attenuation constant

(dashed line) of the leaky mode for an inhomogeneous stripline at 3 GHz

versus the height of the airgap (h = 4.45 mrr~ w = 6.35 mm). Solid and
dashed lines: our results; asterisks and crosses: results of [19]; dotted line:
normalized wavenumbe~ and dotted–dashed line: norrmdized phase constant
of the dominant nonuniform paraflel-plate mode.

is ~1 (given by (19) with m = 1) rather than ~g,l. The values

of /31, obtained from ( 17)–(20), are also shown in Fig. 8. It

can be seen how the leaky line mode is always faster than the

dominant nonuniform background waveguide mode.

An example of the differences that can be found when

different inversion contours are used is shown in Fig, 9. This

figure shows the differences found in the propagation constant

characteristics of the leaky mode of a, pair of coupled strips.

The (a) family of curves accounts for the real and imaginary

parts of the complex propagation constant of the leaky mode

when the inversion contour is chosen as that surrounding only

the pole associated with the dominant parallel-plate mode.

These curves could not have physical meaning according to

the viewpoint proposed here since they have been computed

by violating the criterion of the outgoing power. On the other

hand, the (b) family of curves accounts for the behavior of

the complex propagation constant of the leaky mode when

the inversion contour surrounds all the poles associated with

positive values of the squared transverse wavenumber of the

parallel-plate waveguide. Although the phase constants (?m of

the different waveguide modes corresponding to ~~,m > 0

have not been plotted, it has been checked that the leaky

line mode is always faster than all the excited nonuniform

background waveguide modes.

Finally, Fig. 10 illustrates the leakage characteristics of one

of the fundamental modes of a pair of noncoplanar strips as a

function of the center separation. This figure shows both the

normalized phase and attenuation constants for three values of

frequencies (only one parallel-plate mode is above cutoff for

the dimensions and frequencies analyzed). The three different

curves corresponding to the behavior of ~z /k. for the three

values of frequencies appear superimposed, that is, the phase

constant of this mode is hardly dispersive. On the contrary,

it can be seen how the leakage losses are highly affected by

the frequency. This fact may seriously restrict the technolog-

ical application of this type of noncopkmar configuration in

miniaturized microwave devices even for typical transversal

dimensions much less than the vacuum wavelength. We have
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Fig. 9. Normalized phase constant (~x / kO: solid lines) and normalized atten-

uation constant (az / k.: dashed lines) for the odd mode of a pair of coplanar

coupled strips where e, = 2.25, w/d = 0.50, s/d = 0.25, ft/d = 1. Dotted
line: normalized wavenumber Tg, 1 of the dominant parallel-plate mode. Grey

lines: real improper modes.
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Fig. 10. Normalized phase constant (/3, /lco: solid lines) and normalized
attenuation constant (a, / kO: dashed lines) for the lower fundamental mode

of a pair of noncoplauar coupled strips where w = 80 pm, h = 200 pm,
d = 50 ~m.

found (similarly to [2]) that many noncoplanar multiconductor

configurations show this trend to leak laterally. Consequently,

the numerical study of the propagation characteristics in these

laterally open and noncoplartar structures should be carefully

made. In particular, the possible leakage effects should be

predicted in order to either prevent or take advantage of them.

IV. CONCLUSION

This work has analyzed the possible definitions of the

inversion contour of the Fourier transform when this integral

transform is applied to the analysis of the electromagnetic

propagation in covered planar transmission systems with trans-

lation symmetry. We propose an approach starting from that

integral representation of the spatial LSE/LSM scalar-mode
Green’s function which only comprises waves transferring

energy away from the source. This integral representation

can be later transformed to be viewed as an inverse Fourier

transform. Thus it renders the inversion contour of the Fourier

transform in an unambiguous and direct way. For stratified

structures, the spectral dyadic Green’s function for complex

vahtes of the spectral variable can be easily computed as

the analytical continuation of those spectral dyadlc Green’s

functions previously reported in the literature for real vahres

of the spectral variable.

Some relevant theoretical and numerical aspects relatecl to

the application of the Galerkin method in the spectral domain

to the study of the leaky regime have been discussed. Some

attention has also been devoted to the zero-searching method

since the complex propagation constants of the leaky modes

appear on different sheets of a multivalued function.

Finally, some numerical results show a good agreement be-

tween our results and previously published data. We have also

presented an example to show the quantitative and qualitative

differences that can be found for the propagation characteris-

tics when different choice of the inverse Fourier contour are

used. In addition, the leaky behavior of noncoplanar covered

structures has been analyzed, the high tendency of thlese

structures to leak laterally even for typical dimensions much

less than the vacuum wavelength has been found.

APPENDIX

Let 11, H be the fields of a nonuniform mode which

verifies certain boundary condition in the g-direction and

whose transverse complex propagation constant is given by

kT = k.@r + k.ax. The Poynting vector in the $-direction,

S., is given by

S. := EYH: – E. H;. (39)

If only LSM-modes are now considered, (39) reduces to

S; = EYH; . From V x H = jweE and V . H = O, it

follows that

Ey = –~Hz + ~Hz Hz = –:H. (40)
we z

and substituting (40) into (39)

S;= -@: -t k;)lHz12. (41)

Upon considering that the squared transverse wavenurnber
2 = k2 + kz (similar to (12)), the x-component of theis ~g

Poynting v~ctor &.sociated with LSM-modes can be written as

(42)

Following a similar procedure for LSE-modes, it is found that

(43)
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